作品介紹

概率論沉思錄


作者:杰恩斯     整理日期:2017-02-19 22:42:48


  《概率論沉思錄(英文版)》將概率和統(tǒng)計(jì)推斷融合在一起,用新的觀點(diǎn)生動(dòng)地描述了概率論在物理學(xué)、數(shù)學(xué)、經(jīng)濟(jì)學(xué)、化學(xué)和生物學(xué)等領(lǐng)域中的廣泛應(yīng)用,尤其是它闡述了貝葉斯理論的豐富應(yīng)用,彌補(bǔ)了其他概率和統(tǒng)計(jì)教材的不足。全書分為兩大部分。第一部分包括10章內(nèi)容,講解抽樣理論、假設(shè)檢驗(yàn)、參數(shù)估計(jì)等概率論的原理及其初等應(yīng)用;第二部分包括12章內(nèi)容,講解概率論的高級(jí)應(yīng)用,如在物理測量、通信理論中的應(yīng)用!陡怕收摮了间(英文版)》還附有大量習(xí)題,內(nèi)容全面,體例完整。
  《概率論沉思錄(英文版)》內(nèi)容不局限于某一特定領(lǐng)域,適合涉及數(shù)據(jù)分析的各領(lǐng)域工作者閱讀,也可作為高年級(jí)本科生和研究生相關(guān)課程的教材。

目錄:
  PartⅠ Principlesandelementaryapplications
  1 Plausiblereasoning
  1.1 Deductiveandplausiblereasoning
  1.2 Analogieswith slcaltheories
  1.3 Thethinkingcomputer
  1.4 Introducingtherobot
  1.5 Booleanalgebra
  1.6 Adequatesetsofoperations
  1.7 Thebasicdesiderata
  1.8 Comments
  1.8.1 Commonlanguagevs.formallogic
  1.8.2 Nitpicking
  2 Thequantitativerules
  2.1 Theproductrule
  2.2 Thesumrule
  2.3 Qualitativeproperties
  2.4 Numericalvalues
  2.5 Notationandfinite-setspolicy
  2.6 Comments
  2.6.1 Suectlvevs.oectlve
  2.6.2 G/3delstheorem
  2.6.3 Venndiagrams
  2.6.4 TheKolmogorovaxioms
  3 Elementarysamplingtheory
  3.1 Samplingwithoutreplacement
  3.2 Logicvs.propensity
  3.3 Reasoningfromlesspreciseinformation
  3.4 Expectations
  3.5 Otherformsandextensions
  3.6 Probabilityasamathematicaltool
  3.7 Thebinomialdistribution
  3.8 Samplingwithreplacement
  3.8.1 Digression:asermononrealityvs.models
  3.9 Correctionforcorrelations
  3.10 Simplification
  3.11 Comments
  3.11.1 Alookahead
  4 Elementaryhypothesistesting
  4.1 Priorprobabilities
  4.2 Testingbinaryhypotheseswithbinarydata
  4.3 Nonextensibilitybeyondthebinarycase
  4.4 Multiplehypothesistesting
  4.4.1 Digressiononanotherderivation
  4.5 Continuousprobabilitydistributionfunctions
  4.6 Testinganinfinitenumberofhypotheses
  4.6.1 Historicaldigression
  4.7 Simpleandcompound(orcomposite)hypotheses
  4.8 Comments
  4.8.1 Etymology
  4.8.2 Whathaveweaccomplished?
  5 Queerusesforprobabilitytheory
  5.1 Extrasensoryperception
  5.2 MrsStewartstelepathicpowers
  5.2.1 Digressiononthenormalapproximation
  5.2.2 BacktoMrsStewart
  5.3 Converginganddivergingviews
  5.4 Visualperception-evolutionintoBayesianity?
  5.5 ThediscoveryofNeptune
  5.5.1 Digressiononalternativehypotheses
  5.5.2 BacktoNewton
  5.6 Horseracingandweatherforecasting
  5.6.1 Discussion
  5.7 Paradoxesofintuition
  5.8 Bayesianjurisprudence
  5.9 Comments
  5.9.1 Whatisqueer?
  6 Elementaryparameterestimation
  6.1 Inversionoftheumdistributions
  6.2 BothNandRunknown
  6.3 Uniformprior
  6.4 Predictivedistributions
  6.5 Truncateduniformpriors
  6.6 Aconcaveprior
  6.7 Thebinomialmonkeyprior
  6.8 Metamorphosisintocontinuousparameterestimation
  6.9 Estimationwithabinomialsamplingdistribution
  6.9.1 Digressiononoptionalstopping
  6.10 Compoundestimationproblems
  6.11 AsimpleBayesianestimate:quantitativepriorinformation
  6.11.1 Fromposteriordistributionfunctiontoestimate
  6.12 Effectsofqualitativepriorinformation
  6.13 Choiceofaprior
  6.14 Onwiththecalculation!
  6.15 TheJeffreysprior
  6.16 Thepointofitall
  6.17 Intervalestimation
  6.18 Calculationofvariance
  6.19 Generalizationandasymptoticforms
  6.20 Rectangularsamplingdistribution
  6.21 Smallsamples
  6.22 Mathematicaltrickery
  6.23 Comments
  7 Thecentral,Gaussianornormaldistribution
  7.1 Thegravitatingphenomenon
  7.2 TheHerschel-Maxwellderivation
  7.3 TheGaussderivation
  7.4 HistoricalimportanceofGausssresult
  7.5 TheLandonderivation
  7.6 WhytheubiquitoususeofGausslandistributions?
  7.7 Whytheubiquitoussuccess?
  7.8 Whatestimatorshouldweuse?
  7.9 Errorcancellation
  7.10 Thenearirrelevanceofsamplingfrequencydistributions
  7.11 Theremarkableefficiencyofinformationtransfer
  7.12 Othersamplingdistributions
  7.13 Nuisanceparametersassafetydevices
  7.14 Moregeneralproperties
  7.15 ConvolutionofGaussians
  7.16 Thecentrallimittheorem
  7.17 Accuracyofcomputations
  7.18 Galtonsdiscovery
  7.19 PopulationdynamicsandDarwinianevolution
  7.20 Evolutionofhumming-birdsandflowers
  7.21 Applicationtoeconomics
  7.22 ThegreatinequalityofJupiterandSaturn
  7.23 ResolutionofdistributionsintoGaussians
  7.24 Hermitepolynomialsolutions
  7.25 Fouriertransformrelations
  7.26 Thereishopeafterall
  7.27 Comments
  7.27.1 Terminologyagain
  8 Sufficiency,ancillarity,andallthat
  8.1 Sufficiency
  8.2 Fishersufficiency
  8.2.1 Examples
  8.2.2 TheBlackwell-Raotheorem
  8.3 Generalizedsufficiency
  8.4 Sufficiencyplusnuisanceparameters
  8.5 Thelikelihoodprinciple
  8.6 Ancillarity
  8.7 Generalizedancillaryinformation
  8.8 Asymptoticlikelihood:Fisherinformation
  8.9 Combiningevidencefromdifferentsources
  8.10 Poolingthedata
  8.10.1 Fine-grainedpropositions
  8.11 Samsbrokenthermometer
  8.12 Comments
  8.12.1 Thefallacyofsamplere-use
  8.12.2 Afolktheorem
  8.12.3 Effectofpriorinformation
  8.12.4 Clevertricksandgamesmanship
  9 Repetitiveexperiments:probabilityandfrequency
  9.1 Physicalexperiments
  9.2 Thepoorlyinformedrobot
  9.3 Induction
  9.4 Aretheregeneralinductiverules?
  9.5 Multiplicityfactors
  9.6 Partitionfunctionalgorithms
  9.6.1 Solutionbyinspection
  9.7 Entropyalgorithms
  9.8 Anotherwayoflookingatit
  9.9 Entropymaximization
  9.10 Probabilityandfrequency
  9.11 Significancetests
  9.11.1 Impliedalternatives
  9.12 Comparisonofpsiandchi-squared
  9.13 Thechi-squaredtest
  9.14 Generalization
  9.15 Halleysmortalitytable
  9.16 Comments
  9.16.1 Theirrationalists
  9.16.2 Superstitions
  10 Physicsofrandomexperiments
  10.1 Aninterestingcorrelation
  10.2 Historicalbackground
  10.3 Howtocheatatcoinanddietossing
  10.3.1 Experimentalevidence
  10.4 Bridgehands
  10.5 Generalrandomexperiments
  10.6 Inductionrevisited
  10.7 Butwhataboutquantumtheory?
  10.8 Mechanicsundertheclouds
  10.9 Moreoncoinsandsymmetry
  10.10 Independenceoftosses
  10.11 Thearroganceoftheuninformed
  PartⅡ Advancedapplications
  11 Discretepriorprobabilities:theentropyprinciple
  11.1 Anewkindofpriorinformation
  11.2 Minimum∑Pi2
  11.3 Entropy:Shannonstheorem
  11.4 TheWallisderivation
  11.5 Anexample
  11.6 Generalization:amorerigorousproof
  11.7 Formalpropertiesofmaximumentropydistributions
  11.8 Conceptualproblems-frequencycorrespondence
  11.9 Comments
  12 Ignorancepriorsandtransformationgroups
  12.1 Whatarewetryingtodo?
  12.2 Ignorancepriors
  12.3 Continuousdistributions
  12.4 Transformationgroups
  12.4.1 Locationandscaleparameters
  12.4.2 APoissonrate
  12.4.3 Unknownprobabilityforsuccess
  12.4.4 Bertrandsproblem
  12.5 Comments
  13 Decisiontheory,historicalbackground
  13.1 Inferencevs.decision
  13.2 DanielBernoullissuggestion
  13.3 Therationaleofinsurance
  13.4 Entropyandutility
  13.5 Thehonestweatherman
  13.6 ReactionstoDanielBernoulliandLaplace
  13.7 Waldsdecisiontheory
  13.8 Parameterestimationforminimumloss
  13.9 Reformulationoftheproblem
  13.10 Effectofvaryinglossfunctions
  13.11 Generaldecisiontheory
  13.12 Comments
  13.12.1 Objectivityofdecisiontheory
  13.12.2 Lossfunctionsinhumansociety
  13.12.3 AnewlookattheJeffreysprior
  13.12.4 Decisiontheoryisnotfundamental
  13.12.5 Anotherdimension?
  14 Simpleapplicationsofdecisiontheory
  14.1 Definitionsandpreliminaries
  14.2 Sufficiencyandinformation
  14.3 Lossfunctionsandcriteriaofoptimumperformance
  14.4 Adiscreteexample
  14.5 Howwouldourrobotdoit?
  14.6 Historicalremarks
  14.6.1 Theclassicalmatchedfilter
  14.7 Thewidgetproblem
  14.7.1 SolutionforStage2
  14.7.2 SolutionforStage3
  14.7.3 SolutionforStage4
  14.8 Comments
  15 Paradoxesofprobabilitytheory
  15.1 Howdoparadoxessurviveandgrow?
  15.2 Summingaseriestheeasyway
  15.3 Nonconglomerability
  15.4 Thetumblingtetrahedra
  15.5 Solutionforafinitenumberoftosses
  15.6 Finitevs.countableadditivity
  15.7 TheBorel-Kolmogorovparadox
  15.8 Themarginalizationparadox
  15.8.1 Ontogreaterdisasters
  15.9 Discussion
  15.9.1 TheDSZExample#5
  15.9.2 Summary
  15.10 Ausefulresultafterall?
  15.11 Howtomass-produceparadoxes
  15.12 Comments
  16 Orthodoxmethods:historicalbackground
  16.1 Theearlyproblems
  16.2 Sociologyoforthodoxstatistics
  16.3 RonaldFisher,HaroldJeffreys,andJerzyNeyman
  16.4 Pre-dataandpost-dataconsiderations
  16.5 Thesamplingdistributionforanestimator
  16.6 Pro-causalandanti-causalbias
  16.7 Whatisreal,theprobabilityorthephenomenon?
  16.8 Comments
  16.8.1 Communicationdifficulties
  17 Principlesandpathologyoforthodoxstatistics
  17.1 Informationloss
  17.2 Unbiasedestimators
  17.3 Pathologyofanunbiasedestimate
  17.4 Thefundamentalinequalityofthesamplingvariance
  17.5 Periodicity:theweatherinCentralPark
  17.5.1 Thefollyofpre-filteringdata
  17.6. ABayesiananalysis
  17.7 Thefollyofrandomization
  17.8 Fisher:commonsenseatRothamsted
  17.8.1 TheBayesiansafetydevice
  17.9 Missingdata
  17.10 Trendandseasonalityintimeseries
  17.10.1 Orthodoxmethods
  17.10.2 TheBayesianmethod
  17.10.3 ComparisonofBayesianandorthodoxestimates
  17.10.4 Animprovedorthodoxestimate
  17.10.5 Theorthodoxcriterionofperformance
  17.11 Thegeneralcase
  17.12 Comments
  18 TheApdistributionandruleofsuccession
  18.1 Memorystorageforoldrobots
  18.2 Relevance
  18.3 Asurprisingconsequence
  18.4 Outerandinnerrobots
  18.5 Anapplication
  18.6 Laplacesruleofsuccession
  18.7 Jeffreysobjection
  18.8 Bassorcarp?
  18.9 Sowheredoesthisleavetherule?
  18.10 Generalization
  18.11 Confirmationandweightofevidence
  18.11.1 Isindifferencebasedonknowledgeorignorance?
  18.12 Camapsinductivemethods
  18.13 Probabilityandfrequencyinexchangeablesequences
  18.14 Predictionoffrequencies
  18.15 One-dimensionalneutronmultiplication
  18.15.1 Thefrequentistsolution
  18.15.2 TheLaplacesolution
  18.16 ThedeFinettitheorem
  18.17 Comments
  19 Physicalmeasurements
  19.1 Reductionofequationsofcondition
  19.2 Reformulationasadecisionproblem
  19.2.1 SermononGaussianerrordistributions
  19.3 Theunderdeterminedcase:Kissingular
  19.4 Theoverdeterminedcase:Kcanbemadenonsingular
  19.5 Numericaleva luationoftheresult
  19.6 Accuracyoftheestimates
  19.7 Comments
  19.7.1 Aparadox
  20 Modelcomparison
  20.1 Formulationoftheproblem
  20.2 Thefairjudgeandthecruelrealist
  20.2.1 Parametersknowninadvance
  20.2.2 Parametersunknown
  20.3 Butwhereistheideaofsimplicity?
  20.4 Anexample:linearresponsemodels
  20.4.1 Digression:theoldsermonstillanothertime
  20.5 Comments
  20.5.1 Finalcauses
  21 Outliersandrobustness
  21.1 Theexperimentersdilemma
  21.2 Robustness
  21.3 Thetwo-modelmodel
  21.4 Exchangeableselection
  21.5 ThegeneralBayesiansolution
  21.6 Pureoutliers
  21.7 Onerecedingdatum
  22 Introductiontocommunicationtheory
  22.1 Originsofthetheory
  22.2 Thenoiselesschannel
  22.3 Theinformationsource
  22.4 DoestheEnglishlanguagehavestatisticalproperties?
  22.5 Optimumencoding:letterfrequenciesknown
  22.6 Betterencodingfromknowledgeofdigramfrequencies
  22.7 Relationtoastochasticmodel
  22.8 Thenoisychannel
  AppendixA Otherapproachestoprobabilitytheory
  A.1 TheKolmogorovsystemofprobability
  A.2 ThedeFinettisystemofprobability
  A.3 Comparativeprobability
  A.4 Holdoutsagainstuniversalcomparability
  A.5 Speculationsaboutlatticetheories
  AppendixB Mathematicalformalitiesandstyle
  B.1 Notationandlogicalhierarchy
  B.2 Ourcautiousapproachpolicy
  B.3 WillyFelleronmeasuretheory
  B.4 Kroneckervs.Weierstrasz
  B.5 Whatisalegitimatemathematicalfunction?
  B.5.1 Delta-functions
  B.5.2 Nondifferentiablefunctions
  B.5.3 Bogusnondifferentiablefunctions
  B.6 Countinginfinitesets?
  B.7 TheHausdorffsphereparadoxandmathematicaldiseases
  B.8 WhatamIsupposedtopublish?
  B.9 Mathematicalcourtesy
  AppendixC Convolutionsandcumulants
  C.1 Relationofcumulantsandmoments





上一本:金融怪杰 下一本:諾貝爾獎(jiǎng)獲得者與兒童對話

作家文集

下載說明
概率論沉思錄的作者是杰恩斯,全書語言優(yōu)美,行文流暢,內(nèi)容豐富生動(dòng)引人入勝。為表示對作者的支持,建議在閱讀電子書的同時(shí),購買紙質(zhì)書。

更多好書